网站地图
3936.net
学霸百科 没有你查不到的
离散变量

「官网地址0365.tv」-「永久地址0365.tv」

变量按其数值表现是否连续,分为连续变量离散变量。离散变量指变量值可以按一定顺序一一列举,通常以整数位取值的变量。如职工人数、工厂数、机器台数等。有些性质上属于连续变量的现象也按整数取值,即可以把它们当做离散变量来看待。例如年龄、评定成绩等虽属连续变量,但一般按整数计算,按离散变量来处理。离散变量的数值用计数的方法取得。

离散变量的概率分布,常用的有二项分布、泊松(Poisson)分布。其余的还有两点分布、几何分布、超几何分布等概率分布。

为了表达上的简洁和方便,用变量表示随机事件的所有可能的结果,称为随机变量。随机变量的取值与对应的概率值之间的对应关系称为概率分布。变量就是可变的数量标志。变量值就是变量的具体表现,也就是可变数量标志的数值表现。例如,职工人数是一个变量;某工厂有工人852人,另一个工厂有工人743人,第三个工厂有工人802人,等等,这是工人这个变量的具体数值,也就是变量值。用统计符号表示,X是工人的变量,其变量值为

变量按其数值表现是否连续,分为连续变量离散变量连续变量的数值是连接不断的,相邻两值之间可作无限分割,例如,身高、体重、年龄等都是连续变量。年龄一般虽按整数计算,但如严格按出生时间起算,是可以细算到许多位小数的。连续变量的数值要用测量或计算的方法取得。离散变量的各变量值之间都是以整数断开的,如人数、工厂数、机器台数等,都只能按整数计算。离散变量的数值只能用计数的方法取得。

可取值能一个个列出来的变量称为离散变量,可取值能充满一个区间的变量称为连续变。10名患者痊愈人数

10名患者,服用甲药痊愈人数

定义1: 设离散变量

概率函数的对应值表称概率函数表。图像称概率函数图。概率函数及函数表、图。都能反映离散变量与概率的对应关系,统称离散变量的概率分布,实际问题中简称为离散总体

复杂事件

定理1

证明: 由互斥事件加法定理可证。

定理1表示,在x为横轴.p(x)为纵轴的概率函数图中。累积概率

复杂事件

定义2 事件

离散变量的概率分布,常用的有二项分布、泊松(Poisson)分布。其余的还有两点分布、几何分布、超几何分布等概率分布。

二项分布是基于贝努里(Bernoulli)试验的分布。贝努里试验是一种重要的概率模型。是历史上最早研究的概率论模型之一。有下面两个特点的试验称为贝努里试验。即

(1) 对立性:每次试验的结果只可能是A或

(2) 独立重复性:每次试验的结果互不影响。且

掷币(掷正与掷反)、射击(击中与不中)、动物试验(存活与死亡)、药物疗效(有效与无效)、化验结果(阳性与阴性)等。都是在重复进行贝努里试验。

定义3

若在大量的贝努里试验中,

若随机变量X的概率函数

实际问题中,贝努里试验在

泊松分布的概率函数图在

这里,介绍离散变量的二点分布、几何分布、超几何分布。

定义4:

定义5:

定义6: